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Abstract

Measures of humanmovement dynamics can predict outcomes like injury risk or musculo-
skeletal disease progression. However, these measures are rarely quantified in large-scale
research studies or clinical practice due to the prohibitive cost, time, and expertise required.
Here we present and validate OpenCap, an open-source platform for computing both the
kinematics (i.e., motion) and dynamics (i.e., forces) of humanmovement using videos cap-
tured from two or more smartphones. OpenCap leverages pose estimation algorithms to
identify body landmarks from videos; deep learning and biomechanical models to estimate
three-dimensional kinematics; and physics-based simulations to estimate muscle activa-
tions and musculoskeletal dynamics. OpenCap’s web application enables users to collect
synchronous videos and visualize movement data that is automatically processed in the
cloud, thereby eliminating the need for specialized hardware, software, and expertise. We
show that OpenCap accurately predicts dynamic measures, like muscle activations, joint
loads, and joint moments, which can be used to screen for disease risk, evaluate interven-
tion efficacy, assess between-groupmovement differences, and inform rehabilitation deci-
sions. Additionally, we demonstrate OpenCap’s practical utility through a 100-subject field
study, where a clinician using OpenCap estimated musculoskeletal dynamics 25 times
faster than a laboratory-based approach at less than 1% of the cost. By democratizing
access to humanmovement analysis, OpenCap can accelerate the incorporation of bio-
mechanical metrics into large-scale research studies, clinical trials, and clinical practice.

Author summary
Analyzing how humans move, how we coordinate our muscles, and what forces act on the
musculoskeletal system is important for studying neuro-musculoskeletal conditions. Tra-
ditionally, measuring these quantities requires expensive laboratory equipment, a trained
expert, and hours of analysis. Thus, high-quality measures of human movement are rarely
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incorporated into clinical practice and large-scale research studies. The advent of com-
puter vision methods for locating human joints from standard videos offers a promising
alternative to laboratory-based movement analysis. However, it is unclear whether these
methods provide sufficient information for informing biomedical research and clinical
practice. Here, we introduce OpenCap, an open-source, web-based software tool for com-
puting the motion (e.g., joint angles) and the musculoskeletal forces underlying human
movement (e.g., joint forces) from smartphone videos. OpenCap combines advances in
computer vision, machine learning, and musculoskeletal simulation to make movement
analysis widely available without specialized hardware, software, or expertise. We validate
OpenCap against laboratory-based measurements and show its usefulness for applications
including screening for disease risk, evaluating intervention efficacy, and informing reha-
bilitation decisions. Finally, we highlight how OpenCap enables large-scale human studies
of human movement in real-world settings.

Introduction
Evaluating the dynamics (i.e., musculoskeletal forces) and control of human movement is
important for understanding and managing musculoskeletal and neuromuscular diseases. For
example, the loading in osteoarthritic joints predicts osteoarthritis progression [1], the distri-
bution of moments generated by muscles about lower-extremity joints when rising from a
chair relates to falling in older adults [2–4], and the between-limb asymmetry of muscle and
ground reaction forces while performing demanding tasks relates to functional outcomes after
joint surgery [5–7]. Despite their utility, metrics of movement dynamics are rarely measured
in clinical practice. Instead, visual movement evaluations or general functional tests that
require basic instruments, like a stopwatch or goniometer, are used to inform clinical decisions
and as outcomes for clinical trials.

The quantitative analysis of movement dynamics can provide deeper and more reproduc-
ible insights than visual evaluations and simple functional tests; however, this analysis is
resource intensive, which has impeded its use in large-scale studies and clinical practice. Tradi-
tionally, motion analysis requires a fixed lab space with more than $150,000 of equipment (Fig
1, top row). Kinematics (e.g., joint angles) are measured with a marker-based motion capture
system that uses eight or more specialized cameras to capture the three-dimensional (3D) tra-
jectories of markers placed on a subject. Dynamic measures (e.g., joint moments and powers),
also referred to as kinetics, can be estimated with the additional measurement of ground reac-
tion forces from force plates mounted beneath the floor. Musculoskeletal modeling and simu-
lation tools [8–10] combine measures of kinematics, kinetics, and muscle activation from
electromyography to enable deeper investigations of motor control and musculoskeletal load-
ing (e.g., muscle coordination and joint forces). This comprehensive analysis of movement is
infrequently used outside of small-scale research studies because collecting data on a single
participant, processing it, and, optionally, generating dynamic musculoskeletal simulations
typically takes several days for a trained expert.

Studies of movement dynamics with hundreds of participants have elucidated biomechani-
cal markers that predict injury risk or surgical outcomes [11–13]. However, studies of this
scale are expensive and rare—the median number of subjects included in biomechanics studies
is between 12 and 21 [14,15]. There is a need for inexpensive, scalable, and accurate tools for
estimating movement dynamics on orders of magnitude more individuals in their natural
environments. Modern data science techniques could then leverage these large datasets to
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explore the role of movement in health and disease, facilitating the identification and clinical
translation of quantitative movement biomarkers.

Mobile tools for estimating kinematics have been developed, but most are still too expensive
and time consuming for large-scale research studies and clinical translation, and none enable
full-body analysis of movement dynamics. Inertial measurement units, the most widely used
of these tools, can accurately estimate kinematics [16], but commercially available sensors
remain expensive, time-consuming to don and doff, and utilize proprietary algorithms. Recent
advances in physics-based simulation of the musculoskeletal system have estimated dynamics
from inertial measurement unit–based motion capture [17,18], but these algorithms are not
publicly available and have not been translated beyond small-scale feasibility studies.

Measuring kinematics with video cameras is another promising approach made possible by
recent advancements in human pose estimation algorithms [19,20]. Open-source, two-dimen-
sional (2D) pose estimation algorithms (e.g., OpenPose [21]) have enabled 2D kinematic anal-
yses [22] and can generate inputs for machine learning models that predict kinematic and
dynamic measures [23,24]. While these machine learning models are useful for specific appli-
cations, they may not generalize to other measures, tasks, and populations not represented in
their training data. Another potentially more generalizable approach is to triangulate the body
keypoints (e.g., joint centers) identified by pose estimation algorithms on multiple videos [25–
30] and track these 3D positions with a musculoskeletal model and physics-based simulation.
However, the sparse set of 3D keypoints identified by these algorithms does not fully charac-
terize the translations and rotations of all body segments; thus, it is unclear whether these key-
points are expressive and accurate enough to inform movement research. Commercial
markerless motion capture systems accurately estimate kinematics [31], but they typically

Fig 1. Marker-based motion capture (Mocap) versus video-based (OpenCap) analysis of humanmovement dynamics. (Top row)Marker-based
movement analysis usually occurs in a motion capture laboratory, and a comprehensive study of musculoskeletal dynamics typically requires more than two
days of an expert’s time and equipment worth more than $150,000. (Bottom row)OpenCap enables the study of musculoskeletal dynamics in less than 10
minutes of hands-on time and with equipment worth less than $700 (assuming users need to purchase new mobile devices). OpenCap can be used anywhere
with internet access and requires a minimum of two iOS devices (e.g., iPhones or iPads). (Right panel)OpenCap enables the estimation of kinematic, dynamic,
and musculotendon parameters, many of which were previously only accessible using marker-based motion capture and force plate analysis.

https://doi.org/10.1371/journal.pcbi.1011462.g001
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require many wired cameras, proprietary software, and specialized computing resources. The
ubiquity of smartphone cameras could enable video-based motion capture without the need to
purchase specialized equipment, but it is unclear whether kinematics can be accurately esti-
mated from a small number of devices that lack hardware synchronization. If the challenges of
computing accurate kinematics and dynamics from smartphone video can be addressed,
smartphone-based analysis of musculoskeletal dynamics has the potential to overcome the
translational barriers faced by current movement analysis technologies.

Here we introduce OpenCap, open-source, web-based software that is freely available to the
research community for estimating the 3D kinematics and dynamics of human movement
from videos captured with two or more smartphones (Fig 1, bottom row). OpenCap brings
together decades of advances in computer vision and musculoskeletal simulation to make the
analysis of movement dynamics available without specialized hardware, software, or expertise.
We first validate kinematic and dynamic measures estimated with OpenCap against gold stan-
dard measures computed with marker-based motion capture and force plates. Next, we
explore whether OpenCap estimates dynamic measures with sufficient accuracy to be used for
disease risk screening, evaluating intervention efficacy, studying between-group movement
differences, and tracking rehabilitation progress. After validating these measures in the labora-
tory, we highlight how OpenCap enables clinicians to measure movement dynamics in large
cohorts in real-world settings.

Results
Data collection with OpenCap
Setting up a data collection with OpenCap takes under five minutes and requires two iOS
devices (iPhone, iPad, or iPod), two tripods, a calibration checkerboard (printed with a stan-
dard printer), and another device to run OpenCap’s web application (e.g., a laptop). After pair-
ing the iOS devices to the web application, users are guided through camera calibration, data
collection, and visualization of 3D kinematics. Kinematics are estimated from video using
deep learning models and inverse kinematics in OpenSim [8,10], and dynamics are estimated
using a physics-based musculoskeletal simulation approach (Fig 2, S1 Movie). OpenCap lever-
ages cloud computing for data processing using a scalable server architecture.

Validation against the lab-based gold standard
We validated OpenCap using two iPhones against marker-based motion capture and force
plate analysis in a cohort of ten healthy individuals for several activities (walking, squatting,
rising from a chair, and drop jumps). OpenCap estimated joint angles with a mean absolute
error (MAE) of 4.5˚, ground reaction forces with an MAE of 6.2% bodyweight, and joint
moments with an MAE of 1.2% bodyweight*height (Table 1; additional validation in Methods:
Validation; S1–S4 Tables and Figs A-L in S1 Appendix).

Disease risk screening: Knee loading during walking
We then explored whether OpenCap is sufficiently accurate to estimate measures of joint load-
ing that could be used to screen for individuals at risk of rapid progression of medial knee oste-
oarthritis and to evaluate the efficacy of a non-surgical intervention. We first evaluated how
accurately OpenCap estimates the early-stance peak knee adduction moment, which predicts
rapid progression of medial knee osteoarthritis [1]. The ten healthy individuals walked natu-
rally (i.e., with a self-selected strategy) and with a trunk sway gait modification that typically
reduces the knee adduction moment [32]. OpenCap predicted the early-stance peak knee
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Fig 2. OpenCap comprises a smartphone application, a web application, and cloud computing. To collect data, users open an application on two or more
iOS devices and pair them with the OpenCap web application. The web application enables users to record videos simultaneously on the iOS devices and to
visualize the resulting 3-dimensional (3D) kinematics. In the cloud, 2D keypoints are extracted frommulti-view videos using open-source pose estimation
algorithms. The videos are time synchronized using cross-correlations of keypoint velocities, and 3D keypoints are computed by triangulating these
synchronized 2D keypoints. These 3D keypoints are converted into a more comprehensive 3D anatomical marker set using a recurrent neural network (LSTM)
trained on a large motion capture dataset. 3D kinematics are then computed frommarker trajectories using inverse kinematics and a musculoskeletal model
with biomechanical constraints. Finally, dynamic measures are estimated using muscle-driven dynamic simulations that track 3D kinematics.

https://doi.org/10.1371/journal.pcbi.1011462.g002

Table 1. Mean absolute error (MAE) in kinematics and kinetics fromOpenCap compared to laboratory-based motion capture and force plates.

Kinematics (MAE) Walking Squat Sit-to-stand Drop jump Mean
Rotations (n = 18) [˚] 4.1 (2.3–6.6) 4.1 (1.8–7.2) 4.7 (1.7–10.3) 5.1 (2.3–8.6) 4.5
Translations (n = 3) [mm] 12.3 (6.8–19.6) 12.3 (5.8–18.4) 13.2 (5–20.3) 11.5 (6.3–16.5) 12.3

Ground reaction forces (MAE)
Vertical [%BW] 8.2 (7.5%) 6.4 (20.0%) 5.7 (13.4%) 25.2 (13.8%) 11.4 (13.7%)
Anterior-posterior [%BW] 2.1 (6.7%) 1.3 (37.5%) 1.9 (31.0%) 8.9 (17.3%) 3.5 (23.1%)
Medio-lateral [%BW] 1.1 (17.1%) 5.7 (85.4%) 3.2 (110.5%) 5.3 (29%) 3.8 (60.5%)

Joint moments (MAE)
All degrees of freedom (n = 15) [%BW*ht] 0.75 (0.20–1.32, 19%) 0.97 (0.11–1.93, 45%) 0.68 (0.13–1.09, 60%) 2.50 (1.15–5.90, 25%) 1.22 (37%)

Errors for each activity were averaged over trials and participants (n = 10), and the reported mean is an average over activities and degrees of freedom (six for pelvis
position and orientation [kinematics only], three for the lumbar, three per hip, one per knee, and two per ankle). Forces are expressed in percent bodyweight (BW) and
moments in percent BW times height (ht). Kinematic and joint moment errors are presented as the mean and range over the degrees of freedom, and kinetic errors are
additionally presented as the MAE as a percentage of the range. Root mean squared error in kinematics and kinetics are available in S2–S4 Tables. Average kinematic,
ground reaction force, and joint moment waveforms estimated using OpenCap and Mocap are presented in Figs A–L in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011462.t001
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adduction moment with r2 = 0.80 (r: Pearson correlation coefficient) and an MAE of 0.30%
bodyweight*height compared to marker-based motion capture and force plates (Fig 3). This
error is smaller than a range of thresholds for detecting knee osteoarthritis symptoms and pro-
gression (0.5–2.2% bodyweight*height [1,33–35]). We then evaluated whether OpenCap could
estimate changes induced by the trunk sway modification in the peak knee adduction moment
as well as the peak medial contact force, which is a more comprehensive loading metric that is
often targeted by knee osteoarthritis interventions [36,37]. At the group level, OpenCap cap-
tured expected reductions in the early-stance peak knee adduction moment and peak medial
contact force from the trunk sway gait modification (16–33% reductions, P< .006; t test and
Wilcoxon signed rank test, n = 10, Fig 3B). Significant changes in the same direction were also
detected with motion capture and force plates (21–46% reductions, P< .016; t tests, n = 10);
further details about these statistical tests can be found in Table A in S1 Appendix. For this
sample size, OpenCap had a 92% chance (post-hoc power averaged across tests) of detecting
these expected group differences at the significance level alpha = .05, compared to the 77%
chance from motion capture and force plates. At the individual level, OpenCap correctly pre-
dicted the directional change in both peak loading measures (decrease for nine individuals and
increase for one individual) induced by trunk sway. OpenCap’s ability to accurately estimate
knee loading and changes in loading during walking suggests that it could be used to identify
individuals with medial knee osteoarthritis who may be at risk of rapid disease progression
and to evaluate the effect of a gait modification on individual and group levels [38,39].

Detecting between-group differences: Kinetic differences during sit-to-
stand
We then explored whether OpenCap is useful for studying differences in movement dynamics
that commonly exist between young and older adults. Strategies for rising from a chair vary
with age and are associated with different muscle force requirements [2]. Older adults often
use a rising strategy with increased trunk flexion, which shifts the muscular demand from the

Fig 3. Medial knee loading during walking.We evaluated how accurately OpenCap estimates the knee adduction moment
(KAM), a measure of medial knee loading that predicts knee osteoarthritis progression, and how knee loading changes with a
modified walking pattern. Participants (n = 10) walked naturally and with a trunk sway gait modification. (A)OpenCap estimated
the early-stance peak KAMwith r2 = 0.80, compared to an analysis using marker-based motion capture and force plates (Mocap).
The KAM is normalized by bodyweight (BW) and height (ht). (B) The mean (bar) and standard deviation (error bar) across
participants (circles) are shown for the changes in the peak KAM and peak medial contact force (MCF), which is a more
comprehensive measure of medial knee loading, from natural to trunk sway walking (*P< .05). OpenCap detected the reductions
in peak KAM and MCF (P< .006, t test andWilcoxon signed rank test) that were measured with Mocap (P< .016, t tests).
Furthermore, OpenCap correctly identified the one individual who did not reduce KAM or MCF as estimated by Mocap (filled
circles).

https://doi.org/10.1371/journal.pcbi.1011462.g003
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knee extensors to the hip extensors and ankle plantarflexors [40]; this strategy is associated
with low functional muscle strength [4], which relates to fall risk [3]. We simulated differences
in rising strategies between age groups by instructing ten healthy individuals to rise from a
chair five times naturally, then five times with increased trunk flexion (Fig 4). At the group
level, OpenCap estimated the expected reduction in the knee extension moment (P = .024, t
test, n = 10) and increase in the hip extension (P = .020, t test, n = 10) and ankle plantarflexion
moments (P = .004, t test, n = 10), averaged over the rising phase, from the natural to the
increased trunk flexion condition. The direction of these changes matched what was measured
with motion capture and force plates (P = .002–.003, t tests, n = 10); further details about these
statistical tests can be found in Table B in S1 Appendix. For this sample size, OpenCap had a
65% chance (post-hoc power averaged across tests) of detecting these expected between-condi-
tion differences at the significance level alpha = .05, compared to the 89% chance from motion
capture and force plates. OpenCap also predicted the peak knee extension moment with r2 =
0.65 and MAE = 5.5Nm (0.47%bodyweight*height) compared to marker-based motion cap-
ture and force plates. This error is similar to the average loss in strength that occurs over six
years in middle-aged adults (0.93Nm/year [41], see S1 Appendix for further discussion).
Together, these findings suggest that OpenCap can be used to study differences in movement
dynamics between young and older adults and can identify individuals with low knee extensor
strength who may benefit from muscle strengthening interventions [2].

Informing rehabilitation: Muscle activation asymmetry during squatting
Finally, we explored whether OpenCap can accurately estimate measures of muscle force asso-
ciated with rehabilitation progress. Restoring between-limb symmetry in knee extensor muscle
force generation is often a goal of rehabilitation following knee surgeries, and identifying per-
sistent asymmetry prior to rehabilitation discharge can prevent poor functional outcomes
[5,6,42]. To simulate post-surgical asymmetries, we instructed the ten healthy individuals to
perform five squats naturally, then asymmetrically by reducing the force under their left foot

Fig 4. Distribution of lower-extremity joint moments when rising from a chair. To evaluate OpenCap’s ability to detect between-group differences in
dynamics, we computed differences in lower-extremity joint moments while rising from a chair that commonly exist between young and older adults.
Individuals (n = 10) stood naturally and with increased trunk flexion, a strategy used by individuals with knee extensor weakness that shifts muscle demand to
the hip extensors and ankle plantarflexors. (A) The mean (bar) and standard deviation (error bar) across participants (open circles) are shown for the changes
in knee extension, hip extension, and ankle plantarflexion moments, averaged over the rising phase, from the natural to trunk flexion condition (*P< .05).
Moments are normalized to percent bodyweight (BW) times height (ht). OpenCap identified the changes in joint moments (P = .004–.024, t tests) that were
identified with motion capture and force plates (Mocap, P = .001–.002, t tests). (B) The rising-phase-averaged knee extension moment values for each
participant and condition are shown. OpenCap estimated the knee extension moment with r2 = 0.65 compared to simulations that used motion capture and
force plate data as input (Mocap).

https://doi.org/10.1371/journal.pcbi.1011462.g004
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(Fig 5). Since muscle activation can be measured more directly than muscle force, we com-
pared vasti (knee extensor) muscle activation measured with electromyography to activation
estimated with OpenCap. We defined ground truth activation asymmetry using electromyog-
raphy and a clinically relevant symmetry index threshold [43] of 1.15. OpenCap classified
squats as being symmetric or asymmetric with an area under the receiver operator characteris-
tic curve (AUC) of 0.83 and an accuracy of 75% at the optimal symmetry index threshold of
1.13 (Fig 5), which was similar to the performance of simulations that used motion capture
and force plate data (AUC = 0.82, accuracy = 70%).

Out-of-lab dynamic analysis
To demonstrate OpenCap’s utility in real-world conditions, we extended this analysis of reha-
bilitation tracking to a field study. A clinician, who was not an expert in movement analysis,
used OpenCap to evaluate knee extension moment symmetry in 100 individuals performing
natural and asymmetric squats in the community. On average, set up and data collection took
five minutes per participant, and for a single squat, kinematics and kinetics were computed
automatically in two and 35 minutes on a single server, respectively. In total, data collection
took eight hours for 100 subjects, and computation took 31 hours on a 32-thread CPU (kinetic
computation was parallelized). OpenCap’s peak knee extension moment estimates could dis-
criminate between the symmetric and asymmetric conditions with AUC = 0.90 and accu-
racy = 85% at the optimal symmetry index threshold of 1.33 when using the condition
instruction (i.e., natural or asymmetric) as ground truth (Fig 6A and 6B). OpenCap also
detected within-subject improvements in peak knee extension moment symmetry from the
asymmetric to the natural condition with AUC = 0.93 and accuracy = 89% at the optimal
threshold of 0.26 (Fig 6C and 6D). Together, our lab and field studies demonstrate that Open-
Cap can detect asymmetries in vasti force generation that may be useful for guiding rehabilita-
tion decisions and can track improvements in symmetry expected to occur over the course of
rehabilitation.

Fig 5. Asymmetry in vasti muscle activation during squatting. To assess the utility of OpenCap for informing rehabilitation decisions, we sought to identify
between-limb asymmetries in knee extensor muscle (vasti) function that indicate incomplete rehabilitation and relate to poor post-surgical functional
outcomes. Participants (n = 10) performed squats naturally, then asymmetrically, where they were instructed to reduce the force under the left foot. (A, B) The
mean (line) and standard deviation (shading) across participants are shown for the vasti muscle activation of the left (unweighted) leg measured with
electromyography (EMG) and estimated using OpenCap. Muscle activations are normalized by the maximum value for each participant and measurement
modality. (C)OpenCap identified peak vasti activation asymmetry between the left and right leg (asymmetry defined from EMG and clinically relevant
symmetry threshold), with area under the receiver operator characteristic curve (AUC) of 0.83 and accuracy of 75%. This was similar to the performance of
simulations that used marker-based motion capture and force plate data as input (Mocap sim., AUC = 0.82, accuracy = 70%).

https://doi.org/10.1371/journal.pcbi.1011462.g005
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Discussion
This study describes OpenCap, a platform that combines computer vision and musculoskeletal
simulation to quantify human movement dynamics from smartphone videos. We showed that
OpenCap is sufficiently accurate for several research and clinical applications. OpenCap esti-
mated changes in dynamic measures between conditions with similar statistical power (0.65–
0.92) as the gold standard technique (0.77–0.89), it estimated dynamic measures that predict
adverse outcomes related to osteoarthritis and fall risk with r2 = 0.65–0.80, and it estimated
dynamic measures that can inform rehabilitation decision making with classification accura-
cies of 75–89%. Our field study demonstrated how OpenCap enables clinicians and research-
ers alike to analyze movement dynamics in the field and in large populations.

OpenCap reduces the cost, time, and expertise barriers to analyzing movement dynamics.
OpenCap’s hardware can be acquired for between $40 and $700, depending on whether users
need to purchase new iOS devices (Fig 1). This is about 215 times cheaper than traditional
motion capture laboratory equipment, and it does not require a dedicated laboratory space.

Fig 6. Out-of-lab dynamic analysis. To demonstrate the practical utility of OpenCap for tracking rehabilitation progress, we enrolled 100 participants
in a clinician-led field experiment. Participants performed symmetric squats and asymmetric squats, where they were instructed to reduce the force
under the left foot, which likely resulted in an asymmetry between the left and right knee extension moments. We first evaluated the utility of
OpenCap as a screening tool to detect peak knee extension moment asymmetries. (A) The distributions of knee extension moment symmetry indices
for both squat conditions are shown, with a symmetry index larger than one indicating a lower peak knee extension moment for the left (unweighted)
leg compared to the right leg. (B)OpenCap’s symmetry index estimates classified between natural and asymmetric squats with an area under the
receiver operator characteristic curve (AUC) of 0.90 and accuracy of 85%. We then evaluated the utility of OpenCap for detecting changes in peak
knee extension moment symmetry that would be expected to occur over time during rehabilitation. (C) The distributions of the average difference in
the symmetry index between the asymmetric and natural conditions (i.e., hypothetical improved symmetry over time; red) and the average difference
in the symmetry index between the three trials in the asymmetric condition (i.e., hypothetical unchanged symmetry over time; gray) are shown. (D)
OpenCap detected improvements in symmetry from the asymmetric to the natural condition with AUC = 0.93 (improved compared to unchanged
distributions from (C) and accuracy = 89%.

https://doi.org/10.1371/journal.pcbi.1011462.g006
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Hands-on time for measuring movement dynamics with OpenCap is the time for setting up
the mobile devices and the time to perform the movements (Fig 1, bottom row). During our
in-field data collection, the five minutes of hands-on time per participant was about 25 times
less than a comparable analysis in a motion capture laboratory (about 2 hours). OpenCap does
not require specialized software or expertise, which bridges gaps between the computer vision,
biomechanics, and clinical movement science communities. Most computer vision algorithms
require computer science knowledge to run and most simulation tools require biomechanics
knowledge to operate, but OpenCap automates these processes, making advancements in
these fields more accessible to clinicians and researchers. In the year since releasing OpenCap,
over 2,000 researchers from a variety of fields have used it to collect tens of thousands of
motion trials. OpenCap also meets Stanford University’s security requirements for cloud-
based systems using high-risk data (e.g., protected health information) and ensures end-to-
end data encryption. To further facilitate ease of use, we provide tutorials and examples on a
companion website (https://opencap.ai/).

Our results demonstrate OpenCap’s potential clinical utility as a screening tool and for
informing rehabilitation decisions. Future studies could test OpenCap’s ability to screen for
risk of non-contact ligament injury in athletes [11,44], or to predict efficacy of surgery in indi-
viduals with cerebral palsy [12,13]. OpenCap assessments may also be fast enough to enable
movement screens to become part of routine clinical care, allowing clinicians to track function
over time, and following an injury or surgery, to benchmark rehabilitation status against pre-
injury measures [45]. We investigated OpenCap’s accuracy for estimating several clinically
meaningful metrics; we encourage further validation studies for other activities, populations,
and metrics of interest to evaluate whether OpenCap is sufficiently accurate to inform deci-
sions in use cases beyond those that we explored.

By enabling large-scale, out-of-lab studies, OpenCap can accelerate movement research.
OpenCap detected between-condition differences with similar statistical power as motion cap-
ture and force plate analysis, but in substantially less time. This accuracy and efficiency makes
prospective injury risk studies that require hundreds of participants more feasible, enables the
incorporation of movement dynamics into population-scale health studies that typically only
use pedometry (e.g., the Osteoarthritis Initiative [46] or the UK Biobank [47]), and facilitates
the development of more sensitive functional outcome measures for clinical trials. By automat-
ically computing kinematics, OpenCap is not susceptible to errors introduced by between-
experimenter variance in motion capture marker placement [48]. This could reduce variability
in multi-center studies [49] and enable movement data to be compiled into homogeneous,
sharable datasets that are useful to the machine learning community. Importantly, OpenCap’s
portability will enable studies of populations that are often underrepresented in movement
research due to time and geographic constraints.

OpenCap uses machine learning to improve the fidelity of video-based kinematic estimates
and physics-based modeling to maintain generalizability (Fig 2). We combined a deep learning
model suited for time series data with a constrained biomechanical model to estimate 3D kine-
matics from video keypoints that, alone, are insufficient to characterize 3D kinematics. Our
deep learning model predicts a comprehensive set of anatomical markers from the sparse
video keypoints labeled in common computer vision datasets (e.g., COCO [50]). Using the
predicted anatomical markers, instead of video keypoints, with our biomechanical model
improved kinematic accuracy, averaged across all degrees of freedom, by 3.4˚ (see Methods
and S2 Table). These improvements were greatest for the hip flexion, pelvic tilt, and lumbar
flexion degrees of freedom (4.9–32.6˚ improvement), which are susceptible to large angular
errors due to the sparsity of video keypoints between the hips and shoulders. Additionally, the
deep learning model architecture provides temporal consistency, making OpenCap more
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robust to brief occlusions or mis-identified keypoints. Finally, despite some task-dependent
tuning of the problem formulation, muscle-driven dynamic simulations are a more generaliz-
able approach for estimating dynamics than an end-to-end machine learning approach. This
enabled us to study the dynamics of different movements without training data for each
activity.

The accuracy of OpenCap’s kinematic and kinetic estimates is similar to state-of-the art
markerless motion capture solutions. OpenCap’s kinematic error (range of root mean squared
error [RMSE] across lower-extremity degrees of freedom: 2.0–10.2˚) is similar to errors
reported for inertial measurement unit–based approaches (RMSE: 2.0–12˚ for walking, run-
ning, and daily living activities [18,51–57]) and commercial and academic video-based systems
with eight cameras (RMSE: 2.6–11˚ for walking, running, and cycling activities [31,58]). Addi-
tionally, the joint angle errors between OpenCap and marker-based motion capture are similar
to errors induced by skin motion artifact in marker-based motion capture. For example, the
knee flexion angle computed with skin-mounted markers can have a root-mean-square error
of up to 8˚ compared to the angle measured with bone pin–mounted markers [59], which
exceeds the 4.2˚ root-mean-square error in knee flexion angle between OpenCap and skin
marker–based motion capture (S2 Table). Dramatic improvements in the concordance
between markerless and marker-based motion capture systems may be challenging to demon-
strate due to the errors in the skin marker–based motion capture approach used as ground
truth. Furthermore, in contrast with most inertial measurement unit–based approaches,
OpenCap estimates global translations (e.g., pelvis displacement), enabling estimation of
whole-body measures like center-of-mass trajectory. Interestingly, kinematic estimates did not
substantially improve when using more than two cameras (see Methods and S2 Table), sug-
gesting that two cameras are sufficient for analyzing activities like those included in this study.
To our knowledge, there is no previous example of computing whole-body kinetics from video
alone; however, OpenCap’s kinetic estimates are comparable to inertial measurement unit–
based approaches. For example, OpenCap’s root mean square errors in ground reaction force
(1.5–11.1% bodyweight) and lower-extremity joint moment (0.3–1.7% bodyweight*height)
predictions during walking (S3 and S4 Tables) are comparable to those resulting from using a
17-sensor inertial measurement unit suit (1.7–9.3% bodyweight and 0.5–2.2% body-
weight*height, respectively [18,60]). OpenCap also predicted the first peak knee adduction
moment during walking with 44% higher accuracy than a machine learning model trained spe-
cifically to predict this measure from marker positions that could be extracted from video [24].

OpenCap transforms the outputs of pose detection algorithms into valuable insights for
studying human movement. We designed OpenCap to integrate different pose detection algo-
rithms, and we found only minor differences in kinematics when testing different algorithms
(see Methods and S1 and S2 Tables). With the recent advances in joint center estimation from
single-view [26,30,61,62] and multi-view [26–30] video, we expect OpenCap’s accuracy in esti-
mating kinematics and kinetics to improve as more accurate pose estimation algorithms are
released. By sharing our data and source code, we encourage researchers to benchmark their
models using our data and to contribute to OpenCap’s development by adding support for
their models.

Our study has several limitations. First, we tested OpenCap’s ability to estimate informative
dynamic measures by having healthy individuals simulate different movement patterns associ-
ated with pathology or treatment. While the simulated movements were similar to those
reported in the populations of interest (see Methods: Applications and Statistics), and Open-
Cap could distinguish differences in dynamics between these simulated conditions, future
work is needed to validate these measures in the populations of interest. Furthermore, the rela-
tionship between some kinetic measures and clinical outcomes has been established in the
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literature; however, the level of accuracy at which these metrics need to be estimated to inform
clinical decisions is unknown in most cases because establishing these thresholds requires
resource-intensive longitudinal studies. Where possible, we compared OpenCap’s accuracy to
clinically meaningful thresholds (e.g., the knee adduction moment). We hope that OpenCap’s
ease of use will enable more longitudinal studies that can establish the clinical utility of kinetic
metrics and the required measurement accuracy. Second, we did not measure the repeatability
of measurements obtained with OpenCap. However, based on previous repeatability studies
using markerless motion capture and employing similar methodologies [49], we anticipate
OpenCap to measure kinematics with similar repeatability to, if not better than, marker-based
motion capture. Future studies are necessary to confirm this claim and assess repeatability for
dynamics assessments. Third, the deep learning model that augments our 3D marker set may
not generalize to activities outside of the distribution of activities that it was trained on. We
generated the training data for this model using standard OpenSim kinematics data, so addi-
tional datasets could be added to the training set in the future. Additionally, estimating dynam-
ics requires some task-dependent user inputs, which is a limitation of any optimization-based
muscle-driven simulation. We have provided optimization problem formulations that work
well for several activities. Overall, if future applications require high accuracy rather than gen-
eralizability, OpenCap’s accuracy could likely be improved with task-specific tuning of the
deep learning model and optimization problem formulation.

In conclusion, OpenCap allows non-experts to analyze human movement dynamics in an
order of magnitude less time and for several orders of magnitude less money than was previ-
ously possible with marker-based motion capture and force plates. We expect that OpenCap
will catalyze large-scale studies of human movement, the sharing of motion datasets, and the
translation of movement biomarkers into clinical practice.

Methods
Ethics statement
The protocol for this study was approved and overseen by the Institutional Review Board of
Stanford University (IRB00000351). We conducted the experiment in accordance with this
approved protocol and relevant guidelines and regulations. All participants provided written
informed consent before participation. Participants whose identifiable videos are shared pub-
licly consented to sharing these videos.

Design
OpenCap comprises several steps to estimate movement dynamics from videos. These steps
include calibrating cameras, collecting and processing videos, estimating marker positions,
estimating kinematics, and generating physics-based dynamic simulations of movements. This
pipeline is implemented in Python (v3.7.10). OpenCap’s web application guides users through
each step, and cloud instances are used for computing (Fig 2).

Camera calibration. OpenCap models the iOS device cameras using a fifteen-parameter
pinhole camera model (https://github.com/smidm/camera.py) and computes parameters
using OpenCV [63]. At the beginning of a data collection, OpenCap loads the pre-computed
intrinsic parameters related to each device’s camera hardware and recording settings (princi-
pal point, focal length, and distortion parameters) from a database that we created of recent
iOS devices. Next, the web application guides users to place a checkerboard in view of all cam-
eras, and OpenCap automatically computes the extrinsic parameters (camera transformation
relative to the global frame) from a single image of a checkerboard. We used a precision-man-
ufactured 720x540 mm checkerboard to pre-compute the intrinsic camera parameters for each
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device in our database (see S1 Appendix for details about intra- and inter-phone intrinsic
parameter testing). A 210x175 mm checkerboard printed on A4 paper and mounted to a flat
surface is sufficient for computing extrinsic camera parameters during each data collection.
We found minimal kinematic differences when using the printed checkerboard, compared to
the precision-manufactured checkerboard, to calibrate the cameras (see S1 Appendix).

Video collection and pose estimation. After calibration, users can proceed with simulta-
neously recording videos on all devices through the web application. Videos are recorded at a
resolution of 720x1280 pixels, a frame rate of 60 Hz, and with the camera focus distance set to
a fixed value.

Recorded videos are then processed using video pose detection algorithms. OpenCap cur-
rently supports two algorithms: OpenPose [21] and HRNet [64–67]. These algorithms were
selected due to performance and the inclusion of foot keypoints. For each video, and at each
time frame, both algorithms return the two-dimensional (2D) position of body keypoints as
well as a confidence score (between 0 and 1) indicating the confidence of the algorithm in the
keypoint position. Twenty body keypoints are included for further analysis (neck, mid hip, left
and right shoulders, hips, knees, ankles, heels, small and big toes, elbows, and wrists). Open-
Cap implements custom algorithms for processing 2D keypoint positions (e.g., handling key-
point occlusion) and time synchronizing them across videos using cross-correlations of
keypoint velocities (see S1 Appendix for details).

Triangulation and marker-set augmentation. OpenCap triangulates the synchronized
2D video keypoint positions to compute 3D positions. OpenCap uses a Direct Linear Transfor-
mation algorithm for triangulation [68], and weights the contribution of individual cameras in
the least-squares problem with the corresponding keypoint confidence score [58]. There are
two major limitations of using 3D keypoint positions triangulated from video for biomechani-
cal analysis. First, the video keypoint set is not sufficient to fully define the kinematics of all
degrees-of-freedom of the body segments. Tracking these limited keypoints using a model
with biomechanical joint constraints mitigates this issue for some, but not all body segments.
For example, keypoints at the hips and shoulders are insufficient for robustly determining sag-
ittal-plane hip, pelvis, and lumbar kinematics. Second, most pose estimation algorithms iden-
tify keypoints on a frame-by-frame basis, so the resulting 3D keypoint trajectories are often
physically unrealistic, especially in the presence of misidentified or occluded keypoints.

To overcome these limitations, we trained two long short-term memory (LSTM) networks
to predict the 3D positions of 43 anatomical markers from the 3D positions of the 20 triangu-
lated video keypoints. The set of anatomical markers corresponds to what is commonly used
for marker-based motion capture [69] to robustly determine 3D joint kinematics. We chose
LSTM networks as they leverage time series data, which may improve the temporal consistency
of the output marker position trajectories. We trained two LSTM networks: an arm model to
predict the positions of eight arm markers from the positions of seven arm and torso key-
points, and a body model to predict the positions of 35 body markers from the positions of 15
lower-limb and torso keypoints. Both models also use height and weight as inputs. To train the
networks, we synthesized corresponding pairs of 3D video keypoints and 3D anatomical
markers from 108 hours motion capture data processed in OpenSim from published biome-
chanics studies [70–79] (see S1 Appendix for details on dataset generation). We split the data
into a training set (~80%), validation set (~10%), and test set (~10%). Prior to training, we
expressed the 3D positions of each marker with respect to a root marker (the midpoint of the
hip keypoints), normalized the 3D positions by the subject’s height, sampled at 60 Hz, split the
data into non-overlapping time-sequences of 0.5 s, and added Gaussian noise (standard devia-
tion: 18 mm) to each time step of the video keypoint positions based on a range of previously
reported keypoint errors [24,26,29]. For both models, we tuned hyperparameters using a
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random search. The RMSEs on the test set were 8.0 and 15.2 mm for the body and arm model,
respectively (see S1 Appendix for details about model architecture and training). In practice,
OpenCap uses both LSTM networks to predict root-centered arm and body anatomical
marker positions from root-centered 3D video keypoints. It then adds the root keypoint posi-
tion to all predicted positions.

Physics-based modeling and simulation. After calibration, OpenCap’s web application
guides users to record the participant in a standing neutral pose. OpenCap uses the anatomical
marker positions estimated from the neutral pose to scale a musculoskeletal model to the par-
ticipant’s anthropometry using OpenSim’s Scale tool. OpenCap uses the musculoskeletal
model from Lai et al. [69,80] with modified hip abductor muscle paths according to Uhlrich
et al. [79]. The musculoskeletal model comprises 33 degrees of freedom (pelvis in the ground
frame [6], hips [2x3], knees [2x1], ankles [2x2], metatarsophalangeal joints [2x1], lumbar [3],
shoulders [2x3], and elbows [2x2]). Note that since no markers are attached to the toes, no reli-
able estimates of metatarsophalangeal joint kinematics can be obtained. The metatarsophalan-
geal joint is nevertheless included when generating tracking simulations, since modeling that
joint improves knee mechanics in muscle-driven simulations [81]. The musculoskeletal model
is driven by 80 muscles actuating the lower-limb coordinates and 13 ideal torque motors actu-
ating the lumbar, shoulder, and elbow coordinates. Ground reaction forces (i.e., external
forces) are modeled through six foot-ground contact spheres attached to the foot segments of
the model [82,83]. Raasch’s model [84,85] is used to describe muscle excitation-activation cou-
pling, and a Hill-type muscle model [86,87] is used to describe muscle-tendon dynamics and
the dependence of muscle force on muscle fiber length and velocity. Skeletal motion is mod-
eled with Newtonian rigid body dynamics and smooth approximations of compliant Hunt-
Crossley foot-ground contacts [88,89]. The dynamics of the ideal torque motors are described
using linear first-order approximations of a time delay [83]. To increase computational speed,
muscle-tendon lengths and velocities, and moment arms are defined as a polynomial function
of joint positions and velocities [90]. The polynomial coefficients are fit to the output from
OpenSim’s Muscle Analysis tool applied to 5000 randomly varied lower limb postures. Mus-
cles are represented by ninth-order or lower polynomials, with RMSE of muscle-tendon length
and moment arm lower than 1.5 mm compared to the original model.

After scaling, users can record any movement through OpenCap’s web application. Open-
Cap then uses the anatomical marker positions estimated from the recorded videos and LSTM
network to compute joint kinematics using OpenSim’s Inverse Kinematics tool and the scaled
musculoskeletal model. Users can visualize the resulting 3D kinematics in the web application.

Finally, OpenCap can estimate dynamics using muscle-driven tracking simulations of joint
kinematics. The tracking simulations are formulated as optimal control problems that aim to
identify muscle excitations that minimize a cost function subject to constraints describing
muscle and skeleton dynamics. The cost function J (Eq 1) includes squared terms for muscle
activations (a) and excitations of the ideal torque motors at the lumbar, shoulder, and elbow
joints (etm). It also includes tracking terms (squared difference between simulated and refer-
ence data), namely tracking of experimental joint positions (~q), joint velocities (~_q), and joint
accelerations (~€q):

J ¼
Z tf

t0

w1a
2 þ w2e

2

tm þ w3k~q � qk2

2
þ w4k

~_q � _qk2

2
þ w5k

~€q � €qk2

2
dt; ð1Þ

where t0 and tf are initial and final times, wi with i = 1,. . .,5 are weights, and t is time. Experi-
mental joint positions, velocities, and accelerations are low-pass filtered using fourth-order,
zero-lag Butterworth filters (default cutoff frequencies are 12 Hz for gait trials and 30 Hz for

PLOS COMPUTATIONAL BIOLOGY OpenCap: Humanmovement dynamics from smartphone videos

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011462 October 19, 2023 14 / 26

https://doi.org/10.1371/journal.pcbi.1011462


non-gait trials). Each cost term is scaled with empirically determined weights. To avoid singu-
lar arcs [91], a penalty function is appended to the cost function with the remaining control
variables [83,92]. Note that the optimal control problem formulation can be tailored to the
activity of interest to incorporate activity-based knowledge by, for instance, adjusting the cost
function, constraints, and filter settings (see S1 Appendix). The optimal control problems are
formulated in Python with CasADi [93] (v3.5), using direct collocation and implicit formula-
tions of the muscle and skeleton dynamics [83]. Algorithmic differentiation is used to compute
derivatives [92], and IPOPT is used to solve the resulting nonlinear programming problems
[94] with a convergence tolerance of 1e-4 (all other settings are kept to default).

Practical considerations. The outcomes of OpenCap can be influenced by environmental
and experimental factors. To maximize the accuracy of results, we recommend users follow
several best practices. First, the pose estimation models perform best when the participant is
clearly visible in the video. Enhancing visibility can be achieved by wearing clothing articles
that contrast with each other and the background. For example, blue pants and white shoes on
a black floor would yield better results than black pants and black shoes on a black floor. It is
also advisable for the participant to wear tight-fitting clothing to facilitate the detection of their
joints. While these considerations likely improve OpenCap’s performance, to best represent
out-of-lab data-collection conditions, we did not ask participants in this study to wear specific
colors of clothing. Participant visibility can also be enhanced by avoiding excessive brightness
within the field of view and choosing an uncluttered background.

Second, OpenCap performs best when all body segments are visible by at least two
cameras at all times. OpenCap can handle temporary occlusions of body segments, but it is
advisable to minimize occlusions by optimizing the position of the cameras. When using two
cameras for activities with minimal subject displacement (e.g., squats, sit-to-stands, and drop
jumps), we recommend positioning the cameras at approximately ±45˚ from the subject’s for-
ward-facing direction. For activities like walking, placing the two cameras at about ±30˚ from
the subject’s walking direction can reduce occlusions and increase the length of the capture
volume.

Third, when using two cameras, the size of the capture volume is maximized when the sub-
ject enters the field of view of both cameras at the same location in the volume and exits the
field of view of both cameras at the same location. For example, when positioning cameras for
walking, the participant can stand where the capture volume should begin, and both cameras
can be adjusted such that the participant would just enter the field of view of both cameras at
this location.

Fourth, the distance between the subject and the cameras affects the accuracy of pose esti-
mation models. We recommend selecting a distance such that the subject’s joints are clearly
discernible in the recorded videos. Performing movements 2–10m from the cameras works
well; however, higher resolution pose estimation settings may be needed for accurate kinemat-
ics at 10m (i.e., HRNet or OpenPose high-accuracy settings). Furthermore, extrinsic calibra-
tion errors increase as distance increases from the calibration board’s position. Performing
activities near where the board was placed during calibration or using a larger calibration
board can mitigate these problems. We also recommend not positioning the cameras less than
2m from the subject, since some pose estimation models commonly fail when the subject takes
up a significant portion of the field of view.

Finally, we recommend users frequently visit our website opencap.ai, where we provide
best practices and updates about new features. In the year following its release, we have added
multiple features to OpenCap including support for different musculoskeletal models, record-
ing videos at different frame rates and in landscape mode, and interactive data plotting.
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Validation
Participants and experiment. To validate OpenCap against gold standard kinematic and

kinetic measures, we measured ten healthy adults (sex: 6 female and 4 male; age = 27.7±3.8
[23-25] years; body mass = 69.2±11.6 [59.0–92.9] kg; height = 1.74±0.12 [1.60–1.96] m;
mean ± standard deviation [range]) performing multiple activities in a motion capture labora-
tory. Participants were instructed to perform four activities in a natural (i.e., self-selected) and
modified way during data collection: i) walking naturally and with a trunk sway modification
(trunk leaned laterally over stance leg), ii) performing five squats naturally and then asymmet-
rically (reduced force under the left foot), iii) performing five sit-to-stands naturally and then
with increased trunk flexion (forward lean when rising), and iv) performing three drop jumps
naturally and then asymmetrically (reduced force under the left foot when landing).

Experimental data. Wemeasured ground truth kinematics, ground reaction forces, and
muscle activity with optical motion capture, force plates, and electromyography. An eight-
camera motion capture system (Motion Analysis Corp., Santa Rosa, CA, USA) tracked the
positions (100 Hz) of 31 retroreflective markers placed bilaterally on the 2nd and 5th metatar-
sal heads, calcanei, medial and lateral malleoli, medial and lateral femoral epicondyles, anterior
and posterior superior iliac spines, sternoclavicular joints, acromia, medial and lateral epicon-
dyles of the humerus, radial and ulnar styloid processes, and the C7 vertebrae. Twenty addi-
tional markers were used to aid in segment tracking. Ground reaction forces were
synchronously measured (2000 Hz) using three in-ground force plates (Bertec Corp., Colum-
bus, OH, USA). Wireless electromyography electrodes (Delsys Corp., Natick, MA, USA) mea-
sured muscle activity (2000 Hz) from the vastus lateralis and medialis (electromyography data
from 14 other lower-extremity muscles are shared with the dataset but not analyzed here). We
used OpenCap to record video from five smartphones (iPhone 12 Pro, Apple Inc., Cupertino,
CA, USA). The phones were positioned 1.5 m off the ground, 3 m from the center of the force
plates, and at ±70˚, ±45˚, and 0˚, where 0˚ faces the participant. Unless otherwise noted, the
validation results used only the two ±45˚ cameras. A precision-manufactured, 720x540 mm
checkerboard was used for computing the extrinsic parameters during OpenCap’s camera cali-
bration step.

Marker, force, and electromyography data were filtered using a fourth-order, zero-lag But-
terworth filter. Marker and force data were low-pass filtered (walking: 6 Hz, squat: 4 Hz, sit-to-
stand: 4 Hz, and drop jump: 30 Hz). These frequencies were selected as the frequency that
retained 99.7% of the cumulative signal power of the Fourier-transformed marker trajectories
[95]. Electromyography data were band-pass filtered (30–500 Hz), rectified, and low-pass fil-
tered (6 Hz). Electromyography data were normalized to maximum activation trials including
maximum height jumps, sprinting, and isometric and isokinetic ankle dorsiflexion, knee flex-
ion, hip abduction exercises [96].

Kinematics and kinetics. Laboratory-based (later referred to as Mocap) kinematic and
kinetic data were estimated from measured marker and force plate data using OpenSim 4.3.
We used the same modeling and simulations pipeline as OpenCap to scale the musculoskeletal
models and estimate joint kinematics frommeasured marker data (see Methods: Design: Phys-
ics-based modeling and simulation). Joint kinetics were then estimated from joint kinematics
(filtered at same frequencies as force plate data) and force plate data using OpenSim’s Inverse
Dynamics tool.

OpenCap kinematic and kinetic data were estimated using the two 45˚ cameras and the
HRNet pose detection algorithm. This setup combines simplicity, performance, and a permis-
sible open-source software license. It was selected after conducting a sensitivity analysis study-
ing the effect of using different camera configurations (two, three, and five cameras) and pose
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detection algorithms (OpenPose with default settings, OpenPose with high-accuracy settings,
and HRNet) on predicted anatomical marker positions and joint kinematics. See S1 Appendix
and Methods: Validation: Validation Results for details about the sensitivity analysis and pose
detection algorithm settings.

Error analysis. We evaluated the performance of OpenCap against Mocap by quantifying
errors in anatomical marker positions, joint kinematics, ground reaction forces, and joint
kinetics.

We quantified errors in 3D anatomical marker positions using mean per marker error
(Euclidean distance). We report errors for 17 anatomical markers (the C7 vertebrae and the
left and right acromia, anterior and posterior superior iliac spines, medial and lateral femoral
epicondyles, medial and lateral malleoli, calcanei, and second and fifth metatarsal heads).
Prior to error analysis, we synchronized and aligned Mocap and OpenCap position data by
removing the time delay that minimized the mean difference between marker positions (aver-
aged over all markers and time steps), then subtracting this average position offset from the
OpenCap positions.

We quantified errors in 3D joint kinematics using MAE. We report errors for 18 rotational
degrees of freedom (pelvis rotations [3], hips [2x3], knees [2x1], ankles [2x2], and lumbar [3])
and three translational degrees of freedom (pelvis translations).

We quantified errors in 3D ground reaction forces using MAE normalized by bodyweight.
We also expressed errors as percent of range of the measured signal over each trial. Prior to
quantifying errors, we filtered ground reaction forces from OpenCap using the same filters as
for the measured ground reaction forces (see Methods: Validation: Experimental data).

We quantified errors in 3D joint kinetics using MAE normalized by bodyweight times
body height. We report errors for 15 rotational degrees of freedom (hips [2x3], knees [2x1],
ankle [2x2], and lumbar [3]). It is important to note that while joint moments estimated from
inverse dynamics are considered gold standard, they include non-physical pelvis residual
forces and moments to compensate for the inconsistency between model-based kinematics
and measured ground reaction forces. In contrast, muscle-driven simulations are dynamically
consistent and do not include pelvis residuals. Thus, the differences between Inverse Dynamics
and OpenCap-estimated joint moments are not entirely attributable to error in the OpenCap
pipeline.

Validation results. The marker error, averaged across markers and activities, was 32 mm
using the two-camera HRNet setup. Our sensitivity analysis demonstrated that OpenCap’s
accuracy remained consistent across different pose detectors and additional cameras. Marker
error was 31 and 35 mm when using OpenPose with high-accuracy settings and default setting,
respectively. Using three cameras did not improve accuracy, but using five cameras mildly
reduced error (29 mm for HRNet). Marker error was larger for the upper extremity (39 mm)
and pelvis (38 mm) than for the lower extremity (27 mm) using the two-camera HRNet setup.
Detailed results of the sensitivity analyses are presented in S1 Table.

The kinematic MAE for the two-camera HRNet setup, averaged across degrees of freedom
and activities, was 4.5˚ (range = 1.7–10.3˚) and 12.3 mm (range = 5–20.3 mm) for the 18 rota-
tional and three translational degrees of freedom, respectively (Table 1). Our sensitivity analy-
sis showed that kinematic errors were similar when using the high-accuracy settings and
default OpenPose settings (4.3˚ and 4.7˚, respectively), and when adding cameras (improve-
ment of less than 0.3˚). We also investigated the effect of using video keypoints instead of ana-
tomical markers to estimate joint kinematics. Kinematic errors were 3.4˚ worse on average for
the two-camera HRNet setup when using the video keypoints instead of the anatomical mark-
ers. This was primarily due to 12.1–39.2˚ errors at the lumbar extension, pelvic tilt, and hip
flexion degrees of freedom, due to the limited information in the video keypoint marker set for
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distinguishing between rotations at these joints. Detailed results of the sensitivity analyses are
presented in S2 Table. Average kinematic waveforms estimated using OpenCap and Mocap
are presented in Figs A–D in S1 Appendix.

The ground reaction force MAE, averaged across directions and activities was 6.2% body-
weight. It was 11.4% bodyweight in the vertical direction, 3.5% bodyweight in the anterior-
posterior direction, and 3.8% bodyweight in the medio-lateral direction (Table 1). The joint
moment MAE, averaged across degrees of freedom and activities, was 1.2% bodyweight*height
(Table 1). Detailed results are presented in S3 and S4 Tables, and average ground reaction
force and joint moment waveforms estimated using OpenCap and Mocap are presented in
Figs E–L of S1 Appendix.

Applications and statistics
We assessed OpenCap’s ability to estimate kinetic measures related to musculoskeletal pathol-
ogy in three applications that represent clinical use cases. Unless otherwise noted, these analy-
ses were performed on the 10-subject dataset described in Methods: Validation. All statistical
analyses were performed in Python (v3.7.10) using the scipy [97] (v1.5.4), statsmodels [98]
(v0.13.2), and pingouin [99] (v0.5.2) packages. We compared conditions within and between
measurement modalities using r2, MAE, two-sided paired t tests (alpha = .05), and two-sided
Wilcoxon signed rank tests. Prior to conducting a t test, we tested for normality using a Sha-
piro Wilkes test, and we used a Wilcoxon signed rank test to compare non-normally distrib-
uted data. To prevent inflated Type 1 error from multiple comparisons, we report corrected P-
values after controlling for the false discovery rate using the Benjamini Hochberg procedure
[100]. We evaluated the post-hoc power of t tests and Wilcoxon signed rank tests using the
sample size, alpha = .05, and the observed effect size. We evaluated performance on classifica-
tion tasks using AUC and binary classification accuracy at the threshold that maximized the
true positive rate minus the false positive rate. Unless otherwise noted, values are reported as
mean ± standard deviation.

In the first application, we assessed the peak knee adduction moment and peak medial knee
contact force during walking. Participants walked naturally and with a trunk sway modifica-
tion, which typically alters medial knee loading [32]. Participants walked with 15˚ more trunk
sway on average during the trunk sway compared to the natural condition, which is similar to
the 10–13˚ of trunk sway reported in gait modification studies [32,101]. We computed peaks
of both loading measures during the first half of the stance phase using the Joint Reaction
Analysis tool in OpenSim (see S1 Appendix for details), which uses kinematics, ground reac-
tion forces, and muscle forces as inputs. For OpenCap, we used the outputs of the muscle-
driven dynamic simulation for this analysis, and for Mocap, we used the OpenSim Static Opti-
mization tool to estimate muscle forces. We used static optimization for the Mocap data as it is
commonly used to estimate knee contact forces during low-frequency tasks like walking, and
it is sensitive to changes in contact force induced by gait modifications [102]. We first deter-
mined how accurately OpenCap could estimate the peak knee adduction moment and how it
varies among gait patterns and individuals. For each walking condition, we averaged the peak
knee adduction moment across the three trials for each individual and compared between
OpenCap and Mocap using r2 and MAE. We then determined whether OpenCap could detect
group changes in both loading measures from a gait modification similarly to Mocap. For each
measurement modality, we used either a two-sided paired t test or a Wilcoxon signed rank test
to evaluate the changes from baseline, and we computed the post-hoc power of each test.
Finally, we evaluated whether OpenCap correctly identified an increase or decrease in peak
knee loading measures for each individual, using the Mocap estimate as ground truth.
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In the second application, we evaluated lower-extremity joint moments while rising from a
40 cm chair. Participants stood naturally and with increased trunk flexion, which can shift the
muscle force demand from the knee extensors to the hip extensors and ankle plantarflexors
[40]. During the increased trunk flexion condition, participants stood with a 42±8˚ of trunk
flexion, which is similar to the 47˚ reported in a cohort of older adults with functional limita-
tions [103]. For three repetitions per condition, we averaged the hip extension, knee extension,
and ankle plantarflexion moments over the rising phase, then averaged these values across rep-
etitions. To evaluate OpenCap’s ability to detect group changes between conditions, we com-
pared the moment changes from baseline to trunk-lean using two-sided paired t tests for both
OpenCap and Mocap. We then conducted a post-hoc power analysis for each measurement
modality. To determine OpenCap’s ability to identify individuals with low knee extensor
moments during this motion, we compared each participant’s average knee extension moment
for each condition between OpenCap and Mocap using r2 and MAE.

In the third application, we assessed the between-limb symmetry of knee extensor muscle
activation while squatting. Participants squatted naturally and asymmetrically, which can elicit
asymmetrical knee extensor force generation [7]. We first performed an in-lab experiment to
compare peak vasti muscle (knee extensors) activation measured with electromyography to
peak activation estimated with OpenCap and Mocap. Since there is no change in muscle
strength between these conditions, a change in muscle activation between conditions is a more
easily measured surrogate for a change in muscle force. For OpenCap, muscle activations were
outputs of the muscle-driven tracking simulations, whereas for Mocap, muscle activations
were estimated using OpenSim’s Static Optimization tool. We first averaged the activation of
the vastus medialis and vastus lateralis, then extracted the peak value over a squat (standing to
standing again). We calculated the peak vasti activation symmetry index between the left and
right leg (Eq 2) and averaged across three repetitions in each condition:

symmetry index ¼ 1 �
ainvolved � auninvolved

auninvolved
; ð2Þ

where ainvolved is the peak activation of the left vasti (reduced force under left foot during asymmetric
condition) and auninvolved is the peak activation of the right vasti. The symmetry index is larger than
one when the left peak vasti activation is lower than the right peak vasti activation, which would be
expected in the asymmetric condition. On average, during the asymmetric condition compared to
the natural condition, our participants squatted with a 0.53±0.32 greater symmetry index measured
by electromyography; this is similar to the 0.51 greater asymmetry in vasti strength reported in indi-
viduals one month after a total knee replacement [104].We determined OpenCap’s ability to classify
symmetric vs. asymmetric squats using AUC and classification accuracy, with ground truth symme-
try labels determined from electromyography based on a symmetry index threshold (1.15) that pre-
dicts functional deficits following anterior cruciate ligament surgery [43]. We also computed the
AUC and accuracy for simulated muscle activations fromMocap.

Finally, we performed a field study where a clinician used OpenCap to evaluate knee extension
moment symmetry in 100 individuals outside of the laboratory (sex: 41 female and 59 male;
age = 29.6±9.2 [18-67] years, body mass = 69.2±12.0 [50–109] kg; height = 1.74±0.09 [1.45–1.97]
m; mean ± standard deviation [range]). We used a 210x175mm checkerboard printed on A4
paper and mounted to plexiglass for camera calibration. Participants performed natural squats
and asymmetric squats. All participants provided written informed consent before participation.
The study protocol was approved and overseen by the Institutional Review Board of Stanford
University (IRB00000351). We conducted the experiment in accordance with this approved pro-
tocol and relevant guidelines and regulations. First, we evaluated OpenCap’s ability to detect a
squat with a between-limb asymmetry in the peak knee extension moment. For each participant,
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we computed the peak knee extension moment for three repetitions per condition, computed the
peak knee extension moment symmetry index (Eq 2), and averaged across the repetitions in each
condition. To determine the classification performance, we computed AUC and accuracy, with
ground truth labels being the instructed condition (i.e., natural [assumed to be symmetric] vs.
asymmetric squats). Second, we evaluated OpenCap’s ability to detect between-condition changes
in knee extension moment symmetry, simulating the ability to detect improvements in symmetry
that would be expected to occur over time. To simulate improved symmetry, we subtracted each
participant’s symmetry index averaged over the repetitions of the natural condition from their
symmetry index averaged over repetitions of the asymmetric condition (a positive value indicates
an improvement in symmetry). To simulate unchanged symmetry, we averaged the difference in
symmetry index between each combination of the asymmetric squat repetitions. We computed
the AUC and accuracy of this change in symmetry measure using the known class (i.e., improved
symmetry or unchanged symmetry) as ground truth.

Supporting information
S1 Appendix. Supplementary methods and results.
(PDF)

S1 Table. Errors in each marker position between OpenCap and motion capture. The mean
per-marker error is shown for each marker, activity, camera combination, and pose detection
algorithm.
(XLSX)

S2 Table. Errors in kinematics between OpenCap and motion capture. The mean absolute
error (MAE) and root mean square error (RMSE) are shown for each degree of freedom, activ-
ity, camera combination, and pose detection algorithm.
(XLSX)

S3 Table. Errors in ground reaction forces between OpenCap and force plates. The mean
absolute error (MAE), root mean square error (RMSE), and mean absolute error as a percent-
age of the range (MAPE) are shown for each activity using the two-camera HRNet setup.
(XLSX)

S4 Table. Errors in joint moments between OpenCap and inverse dynamics using motion
capture and force plates. The mean absolute error (MAE), root mean square error (RMSE),
and mean absolute error as a percentage of the range (MAPE) are shown for each activity and
degree of freedom using the two-camera HRNet setup.
(XLSX)

S1 Movie. Overview of the motivation, technology, and impact of OpenCap.We introduce
the value and limitations of the current lab-based approach for estimating human movement
dynamics. We then show an OpenCap data collection and demonstrate how it overcomes the
cost, time, and expertise limitations of the lab-based approach. Finally, we demonstrate Open-
Cap’s accuracy and discuss how it can catalyze large-scale research studies and the clinical
translation of movement biomarkers.
(MP4)
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