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Smartphone videos of the sit-to-stand test predict osteoarthritis
and health outcomes in a nationwide study
Melissa A. Boswell 1,4✉, Łukasz Kidziński 2,3,4, Jennifer L. Hicks1, Scott D. Uhlrich2, Antoine Falisse 1 and Scott L. Delp1,2

Physical function decline due to aging or disease can be assessed with quantitative motion analysis, but this currently requires
expensive laboratory equipment. We introduce a self-guided quantitative motion analysis of the widely used five-repetition sit-to-
stand test using a smartphone. Across 35 US states, 405 participants recorded a video performing the test in their homes. We found
that the quantitative movement parameters extracted from the smartphone videos were related to a diagnosis of osteoarthritis,
physical and mental health, body mass index, age, and ethnicity and race. Our findings demonstrate that at-home movement
analysis goes beyond established clinical metrics to provide objective and inexpensive digital outcome metrics for nationwide
studies.
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INTRODUCTION
Physical function profoundly impacts an individual’s quality of
life1, as evidenced by the diminishing functional health observed
with aging2 and diseases such as osteoarthritis3. Declining
physical function in older adults is associated with increased falls,
medical diagnoses, doctor visits, medications, and days spent in a
hospital2. The time required to complete five repetitions of the sit-
to-stand (STS) transition, as measured by a stopwatch, is widely
used to evaluate physical function. In-lab studies indicate that
automated timing is more sensitive in detecting physical health
status than manual measurement4,5, and kinematic measures are
more sensitive than timing alone6–8. However, quantifying human
movement traditionally requires an expensive motion-capture
system and experienced laboratory personnel, severely restricting
scalability and access.
The rapid increase in smartphone availability9 and recent

developments in video-based human pose-estimation algo-
rithms10–13 may allow automated motion analysis using two-
dimensional (2D) video recorded with a smartphone14,15. Yet, to
date, studies analyzing motion from smartphone videos have
been carried out in a clinical14 or laboratory setting15. In a recent
home-based study, STS test time extracted from skeletal motion
data from the Microsoft Kinect color camera and depth sensor
correlated with participants’ laboratory-based time16. This study
supports the feasibility of unsupervised at-home tests; however,
research staff trained participants to conduct the test in their
homes, and the requirement of owning a Kinect inhibits broad
adoption. It remains unclear whether pose estimation from self-
recorded smartphone video can quantify movement with
sufficient accuracy to predict health and physical function.
Here, we examine whether at-home smartphone videos of the

STS test predict clinically relevant health measures, which, if
affirmed, supports the notion that self-guided remote assessments
can improve digital healthcare and enable decentralized clinical
trials. To do this, we developed an online tool to capture and
automatically analyze self-collected at-home videos of the five-
repetition STS test (Fig. 1 and Supplementary Fig. 1). This tool also
collected demographic and health data via surveys. We deployed

the tool in a nationwide study and examined if the data
reproduced relationships from previous laboratory studies. To
assess the accuracy of our home-based system, we compared the
STS parameters extracted from our web application with those
calculated from a laboratory motion-capture camera system. We
then examined whether quantitative STS parameters related to
measures of demographics, physical health, mental health, and
knee or hip osteoarthritis diagnosis. Osteoarthritis was the primary
health condition we evaluated due to its widespread prevalence17

and well-documented effect on lower body strength18 and altered
STS kinematics6,19. Finally, the STS videos, demographic informa-
tion, and health metrics; a detailed implantation of our pipeline;
and our web application are publicly available, resulting in a
dataset ripe for follow-up studies.
From 493 total videos submitted, 405 videos across 35 US states

were used in the final analysis (Supplementary Fig. 2). Participant
characteristics are described in Supplementary Table 1. Our study
had nearly 35 times the number of participants of traditional
biomechanical studies (where the median sample size is 14.520)
with minimal researcher time and resources required.
We first examined if our tool could reproduce the results of

laboratory and clinic-based assessments. We found that a larger
maximum trunk angle was associated with a diagnosis of
osteoarthritis (R= 0.18, p < 0.001; Supplementary Table 2), even
when controlling for age, sex, BMI, and STS time (β= 0.029, 95%
confidence interval (CI)= [0.006, 0.052], p= 0.015; Supplementary
Table 3). The difference in trunk angle between groups in our
study (5.8 degrees) was smaller than the difference in trunk flexion
reported by Turcot et al. (9.0 degrees), which is expected since the
prior study only included people with advanced knee osteoar-
thritis. In addition, Turcot et al. measured trunk flexion purely in
the sagittal plane6, while the trunk angle obtained from a 45-
degree angle in our study is affected by movement in both the
frontal and sagittal planes. Previous lab-based studies have also
found that individuals with knee osteoarthritis adopt a larger trunk
flexion angle and greater lateral trunk lean on the contralateral
side during the STS transition to reduce the knee joint moment,
joint contact forces, or pain6, or to compensate for weak knee
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extensor muscles18,21. Our smartphone-based tool was able to
capture this kinematic compensation (Fig. 2a). STS time was
associated with osteoarthritis (R= 0.18, p= 0.001; Supplementary
Table 2), but was no longer a significant predictor of osteoarthritis
status when controlling for age, sex, and BMI (p= 0.847). Thus,
while time to complete the task is related to other measures,
kinematics appear to be a more specific and sensitive measure of
health and functioning. We found moderate to strong associations
between STS parameters extracted from our web application and
from the same or the closest analogs from motion capture
(R= 0.997, R= 0.583, R= 0.702, and R= 0.556 for STS time,
maximum trunk angle from video vs. lumbar flexion from motion
capture, maximum trunk angle from video vs. lumbar bending
from motion capture, and maximum trunk angular acceleration
from video vs. lumbar flexion acceleration from motion capture,
respectively; see Methods).
Our smartphone-based tool also reproduced the significant

positive associations between STS time and health, age, and BMI
found in prior lab-based studies4,22,23. In particular, a longer time
to complete the STS test was associated with a lower physical
health score (R= –0.20, p < 0.001), a higher BMI (R= 0.20,
p < 0.001), and older age (R= 0.35, p < 0.001; Fig. 2c and
Supplementary Table 2). Furthermore, time was a predictor of
physical health (β= –0.938, 95% CI= [–1.610, –0.237], p= 0.006)
when controlling for age, sex, and BMI. All other relationships
evaluated were not significant (Supplementary Table 2). Com-
pared to reference STS test times, the average test time in our
study was longer (11.4 ± 3.4 s vs. 7.5 ± 2.4 s reported by Bohannon
et al.23). A similar minimum (4.3 vs. 3.9 s23) but larger maximum
(32.9 vs. 17.6 s23) indicates greater variation in performance,
possibly due to the lack of feedback and test training24.
We next explored relationships between STS parameters across

varying ethnic and racial groups and mental health. Maximum
trunk angle differed across racial and ethnic groups (p < 0.001; Fig.
2b and Supplementary Table 4). In a comparison between the two
largest ethnic groups, white (N= 243) vs. Asian (N= 103),
differences in trunk angle remained significant when controlling
for age, sex, BMI, and physical health (β= –0.084, 95%
CI= [–0.130, –0.038], p < 0.001; Supplementary Table 5). While
racial and ethnic disparities exist in the incidence and outcomes of
musculoskeletal disease25, race and ethnicity are rarely examined
in biomechanical studies due to the typically small study samples.
Similar to the conclusions of Hill et al. who found racial differences
in gait mechanics26, our findings suggest that we should not
assume biomechanical similarity between different racial and
ethnic groups.

Since STS tests are most commonly performed in older adults,
we also performed an exploratory subgroup analysis between STS
parameters and physical and mental health in the 106 individuals
50 years of age or older. We found that greater maximum forward
trunk angular acceleration was associated with a higher mental
health score (R= 0.28, p= 0.012; Fig. 2d and Supplementary Table
6), which remained significant when controlling for age, sex, BMI,
and time (β= 1.705, 95% CI= [0.376, 3.034], p= 0.012; Supple-
mentary Table 7). Psychological studies typically require larger
sample sizes than biomechanical studies to determine significant
results; therefore, few studies have evaluated the relationships
between biomechanics and mental health. The large scale of these
at-home tests could allow further exploration of these relation-
ships and, potentially, enable the use of one’s motion as an
objective measure of mental health status.
Participants considered the protocol very easy (see Methods),

suggesting real-world adherence to our application would be high27,
but limitations remain. One key limitation is the inconsistency in STS
test performance and environment across participants. For example,
participants used varying types and heights of chairs and foot and
arm positions, which can influence the STS movement24. Our study’s
2D joint angle projections were likely affected by camera recording
angle and height differences, making it unlikely that participants
achieved the same accuracy as the trained researchers in our
laboratory validation. Our large number of participants helped draw
significant relationships between health and joint angles despite this
variability. Improved user interfaces could more consistently guide a
participant to the correct position relative to the camera and reduce
this variability. Future advances in 3D pose estimation could mitigate
camera position issues and be integrated with a musculoskeletal
model to obtain kinetic measures such as joint loading28. Another
limitation was the error of the pose-estimation algorithm when
predicting joint locations (particularly the hip) for individuals with
loose-fitting clothing, such as skirts or sweatpants, or higher BMIs.
Where apparent, these videos were removed, but the errors with hip
location estimation may have still influenced our results, particularly
trunk kinematics. Pose-estimation algorithms are often tested on
large datasets of individuals performing a range of activities29,30;
digital tools meant for health evaluations may benefit from
additional model training with a diverse sample of participants (i.e.,
varying BMIs), particularly those with movement conditions like
osteoarthritis, performing the activity of interest.
In summary, we developed a digital tool to automatically

measure STS times and kinematics from at-home videos, deployed
it in a nationwide study, and found that measurements from at-
home videos are sensitive enough to predict physical health and

Fig. 1 An overview of our web application to collect and analyze movement data. a Participants perform the five-repetition sit-to-stand test
while an untrained individual records the test using only a smartphone or tablet from a 45-degree angle to capture a combined sagittal and
frontal view. b The video is uploaded to the cloud and a computer vision algorithm, OpenPose12, computes body keypoints throughout the
movement. c Our tool computes the key transitions in each STS cycle (i.e., as the participant rises from the chair and returns to sitting). d Our
algorithms compute the total time to complete the test and several important biomechanical parameters, like trunk angle (see Methods for
details). Note: the photograph in (b) is an actor, not a study participant, who consented for their photo to be used in the publication.
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osteoarthritis. The consistency of this study’s results with lab-
based studies, including the relationship between trunk angle and
osteoarthritis presence, and its accessibility as an open source
online tool support its use by researchers and clinicians to
leverage biomechanics for at-home monitoring of physical
functioning at an unprecedented scale. Furthermore, with a large
pool of participants, we discovered relationships between
biomechanics and ethnicity and race, as well as biomechanics
and mental health. Our web application, dataset, source code, and
processing code are freely available online, enabling other
researchers to use and adapt our tools and explore our dataset
for new research questions. For example, researchers could adapt
our web application to analyze other variations of the STS test or
different functional tests so that in the future, it may be possible to
conduct an entire battery of functional tests at home. Our tool can
also analyze previously collected video data, opening the door to
answering a multitude of new research questions without any
additional data collection. Our study demonstrates the ability to

assess health using self-collected smartphone videos at home.
This finding contributes to the growing evidence that mobile,
inexpensive, easy-to-use web applications will enable decentra-
lized clinical trials and improve remote health monitoring.

METHODS
Participants and procedures
Participants. Across 35 US states, 493 participants (age: mean=
37.5 years, range= (18, 96); sex: 54% female) successfully
completed the entirely self-guided study. Individuals were
qualified to participate if they currently resided in the United
States, were of at least 18 years of age, had gotten up and down
from a chair in the past week, felt safe standing up from a chair
without the use of their arms, indicated that another person was
present to monitor and record their test, and answered “No” to all
questions of risk in the Physical Activity Readiness Questionnaire
for Everyone (2020 PAR-Q+)31. In the sample of individuals used in

Fig. 2 Relationships between sit-to-stand parameters and survey measures. a Trunk angle is larger in patients with hip or knee
osteoarthritis, determined from a Pearson correlation test adjusted to control for the false discovery rate. b Trunk angle differs across race and
ethnicity, determined from a Dunn’s test with multiple comparison p values adjusted to control for the false discovery rate. c Greater trunk
angular acceleration is associated with a higher mental health score, determined from a Pearson correlation adjusted to control for the false
discovery rate with all 21 comparisons. d Test completion times increase with older age, as determined by a t-test. In the box-and-whisker
plots, the top and bottom lines of the boxes (hinges) are the first and third quartiles, respectively. The horizontal line is the median, and the
whiskers extend from each hinge to the largest value no further than 1.5 times the interquartile range to the respective hinge. In the scatter
plot, the gray shading around the blue regression line represents the confidence interval in the scatter plot.
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the final analysis (N= 405; participant exclusion described in the
“Data cleaning” section), the mean age was 37.3 ± 17.8 years,
ranging from 18 to 96 years, and 53% were female (Supplemen-
tary Table 1). To test for differences in age, gender, and BMI
between participants included vs. excluded from the analysis, we
calculated the standardized mean difference (SMD)32. We chose
an SMD of less than 0.1 to indicate a negligible difference, a
threshold recommended to determine imbalance33. There were
no differences in age or BMI between participants included and
participants excluded from the final analysis (SMD (95% CI)= 0.07
(–0.16; 0.30) and SMD (95% CI)= 0.05 (–0.17; 0.28), respectively);
however, there was a larger proportion of female participants in
the entire sample than those included in the final analysis (58% vs.
53%, respectively; SMD (95% CI)= 0.10 (–0.13; 0.33)).
Our team recruited participants via social media posts, fliers,

word of mouth, and other study participant pools. By leveraging
research studies focusing on aging and osteoarthritis, we recruited
individuals of older age and with hip and/or knee osteoarthritis.
Participants were compensated with a $30 gift card and received a
link to their STS test with an overlaid visualization of their motion
analysis. We obtained approval for the study from the Stanford
University Institutional Review Board (IRB-59455) and digital
informed consent from all participants.

Procedures. Participants joined our study directly from our
website (sit2stand.ai; Supplementary Doc. 1). After selecting “Join
Study,” they were directed to a series of qualification and safety
questions. If they qualified, they were presented with a digital
consent form. Immediately after providing informed consent,
participants were shown a video and written instructions for the
STS test. The webpage gave the option to open the individual’s
camera to record the test or upload a previously recorded video.
After upload, the participant reviewed their video and approved it
for submission before being directed to the survey (Supplemen-
tary Doc. 2).

Five-repetition STS test. We chose the STS test as it is a frequently
used clinical test of physical function. The STS transition is related
to the strength and power of the lower limbs23, such as knee
extension strength34. It is one of the most mechanically
demanding functional daily activities35. Because of this, clinicians
and researchers widely use STS transitions to evaluate physical
function. In addition, a recent study tested the feasibility of
administering the STS test at home and found that a self-
administered, video-guided STS test was suitable for participants
of varying ages, body sizes, and activity levels36.
In the most common variation of STS transition tests, the five-

repetition STS test37, an individual moves from sitting in a chair to
standing five times in a row as quickly as possible with their arms
folded across their chest (Supplementary Fig. 3). Researchers have
related the time to complete the STS to age, height23, weight23,
knee extension strength23, physical activity level4, vitality16,
anxiety16, and pain16. STS is also a valid and reliable clinical
assessment for various conditions, including arthritis38, pulmonary
disease39, Parkinson’s disease40, and degenerative spinal pathol-
ogies41. Beyond timing, in-lab studies have found that one’s
kinematics during an STS task are related to frailty7, fall risk16, and
osteoarthritis status19.

Survey measures
Participant characteristics. Participants reported, via survey, their
age, sex, gender, height, body weight, ethnicity, education,
employment, income, marital status, and state of residence. BMI
was calculated from their reported height and weight.

Physical and mental health. Overall physical and mental health
status was assessed using the PROMIS v.1.2 Global Health Short

Form, which captures functioning across physical and mental
health in adults42. The Global Health Short Form is a ten-item
survey measuring overall physical function, fatigue, pain, emo-
tional distress, and social health in healthy and clinical adult
populations. Separate scores were calculated for global physical
health (GPH) and global mental health (GMH)43. The items in the
GPH and GMH domains function across ages and medical
conditions44 and have been validated for remote delivery45.

Osteoarthritis status. Participants were asked (yes/no) whether
they have a clinical diagnosis of hip or knee osteoarthritis
modeled from a previous study46.

Video analysis
Automated pose estimation. We instructed each participant to
record a video of the STS test using a smartphone placed or held
vertically. We processed all videos using OpenPose12, a widely
used47, and high-performing48,49 neural network-based software
for pose estimation. For each person present in an RGB image,
OpenPose returns the 2D position of 25 body landmarks: the nose,
neck, and midpoint of the hips, and bilateral shoulders, elbows,
wrists, hips, knees, ankles, eyes, ears, first metatarsals, fifth
metatarsals, and heels.
From each video, we extracted frames using FFmpeg Version

4.2.4 and ran OpenPose on each video frame. In frames where the
algorithm detected multiple people, we only considered the
person closest to the camera, defined as the detection with the
greatest distance between the feet and nose. Pose-estimation
processing failed for four videos, which were not included in the
final analysis.

Pre-processing. We derived the number of frames per second
(framerate) for each video using ffprobe software. OpenPose failed
to detect the participant’s pose in a small fraction of frames (<1%).
As only a single frame was ever missing in a series, we used linear
interpolation to estimate missing keypoint positions in a given
frame. We observed high-frequency, low-magnitude noise in the
OpenPose output, possibly due to the low resolution of the input
for the OpenPose neural network. We found that a 6 Hz, fifth-
order, zero-lag, low-pass Butterworth filter (scipy package) was the
most robust when comparing low-pass filtering, spline smoothing,
and Gaussian smoothing. While we instructed the recorder to
record to the right of the participant, for consistency, we
horizontally mirrored keypoints in cases where the participants’
left side was closest to the camera. To normalize the data across
participants, we divided all coordinates by subject height in pixels,
approximated as the 95th percentile of the distance between the
right ankle and nose keypoints. For 32 participants, our algorithm
detected 3 (N= 1), 4 (N= 29), or 6 (N= 2) STS cycles. We found
the average time per cycle for these participants and multiplied it
by five.

STS parameter extraction. We used the nose marker’s local peaks
in the vertical axis to determine the standing and sitting phases.
We defined the STS phase as the time between a local minimum
and the following local maximum and the stand-to-sit phase as
the time between a local maximum and the following local
minimum. We calculated the total test time as the time between
the first and the last standing positions.
We computed 2D joint angles in the camera projection plane

for the right and left sides, including the knee (from the ankle-
knee-hip keypoints), hip (from knee-hip-neck keypoints), and
ankle (from the first metatarsal-ankle-knee). We defined trunk
angle as the angle between a vector from the hip pointing
vertically along the camera frame and a vector from the right
hip to the neck. To compute marker speeds and joint angular
velocities and accelerations, we used discrete derivatives and
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divided them by the framerate. We averaged total test metrics
across the five stand-to-sit-to-stand cycles and isolated for the
STS and stand-to-sit phases. Prior to analysis, we hand-selected
a limited set of kinematic parameters (i.e., trunk angle and trunk
angular acceleration during the STS transition) based on
previous literature and assessed their associations with the
survey measures.

Data cleaning. Out of 493 videos submitted, 489 were success-
fully processed with OpenPose. From this subset, we excluded 84
participants due to the following video recording errors (not
mutually exclusive): use of a heavily cushioned chair (n= 2); long
pause between repetitions (n= 29); too close, out of frame, or
bodily obstruction (n= 25); camera angle was planar (rather than
at a 45-degree angle; n= 34); use of arms to stand (n= 20); large
pose-estimation error due to participant wearing a skirt (n= 1).

Statistical analyses
Descriptive statistics. Standard descriptive statistics were calcu-
lated for participant characteristics, outcome measures, and STS
times and kinematics.

Associations. We used Pearson correlations to evaluate associa-
tions between STS parameters (time, maximum trunk angle during
STS, and maximum trunk angular acceleration during STS) and
characteristics (age, sex, BMI, and ethnicity) and health measures
(physical health, mental health, and osteoarthritis diagnosis). We
accounted for multiple comparisons of the Pearson correlations by
controlling for the false discovery rate (Benjamini and Hochberg
method50) with all 21 comparisons. For analyzing associations
between STS parameters and physical and mental health in the
subsample of participants over the age of 50 (N= 106), we
accounted for multiple comparisons with six comparisons.
To compare trunk angles among the four largest ethnic and

racial groups, we performed a Kruskal–Wallis test, which
accounted for the non-parametric distribution of the smallest
two groups. We followed this test with a post hoc Dunn’s test with
multiple comparison p values adjusted to control for the false
discovery rate. In addition, we performed a logistic regression with
the two largest groups (white vs. Asian), controlling for age, sex,
and BMI. Significant associations between kinematic parameters
and health measures were further evaluated with linear or logistic
regression (for continuous or binary dependent variables,
respectively), controlling for age, sex, BMI, and STS time.

Lab-based motion-capture validation
We compared our video-based STS parameters to laboratory
measurements from marker-based motion capture.

Participants. We collected data from eleven healthy adults
(N= 11, 7 female and 4 male; age= 27.7 ± 3.4 [23–35] years;
body mass= 67.8 ± 11.4 [54.0–92.9] kg; height= 1.74 ± 0.11
[1.60–1.96] m; mean ± standard deviation [range]). All participants
provided written informed consent before participation. The study
protocol was approved and overseen by the Institutional Review
Board of Stanford University (IRB00000351).

Protocol. We measured ground truth kinematics with an eight-
camera motion-capture system (Motion Analysis Corp., Santa Rosa,
CA, USA) that tracked the positions (100 Hz) of 31 retroreflective
markers placed bilaterally on the second and fifth metatarsal
heads, calcanei, medial and lateral malleoli, medial and lateral
femoral epicondyles, anterior and posterior superior iliac spines,
sternoclavicular joints, acromion processes, medial and lateral
epicondyles of the humerus, radial and ulnar styloid processes,

and the C7 vertebrae. Twenty additional markers aided in limb
tracking. Marker data were filtered using a Savitzky–Golay filter
with a window size of 0.5 s and a third-degree polynomial.
We used OpenSim 4.351,52 to estimate joint kinematics from

marker trajectories. We first scaled a musculoskeletal model53 to
each participant’s anthropometry based on anatomical marker
locations from a standing calibration trial using OpenSim’s Scale
tool. Then we computed joint kinematics using OpenSim’s Inverse
Kinematics tool.
We computed the time to complete the STS test using motion

capture and OpenPose. Since the nose marker was not collected
in motion-capture trials, for comparability, we used the peaks of
the pelvis marker in both settings. We compared the video-
based test time and kinematic measures (total trunk angle and
trunk acceleration) to motion-capture test time and the most
similar kinematic parameters (lumbar flexion and bending and
lumbar flexion acceleration). For these comparisons, we used r
statistic, the square root of the coefficient of determination R2.

Participant feedback
Participant feedback. Participants rated the difficulty of their
participation with the question, “How easy or difficult was it for
you to complete the STS test portion of this study (including
reading the instructions, performing the test, and uploading the
video)?”. An open-ended follow-up question allowed participants
to further describe any challenges or general feedback.
On average, participants found completing the study “very

easy” to do (4.58 ± 0.77, N= 493; 1 = very difficult and 5 = very
easy). A thematic analysis of participant feedback uncovered
eight themes related to the experience of participating in the
study: The study was enjoyable (e.g., “Really enjoyed being able
to participate in something from home, pretty cool!”); the study
was easy to do (e.g., “The instructions were clear and [the]
platform was easy to use”); participants were curious about the
purpose of the study and interpretation of the results (e.g.,
“Would have been great if you could explain how my responses
would help in the study”); the study took longer than expected,
particularly the survey portion (e.g., “Survey too long”);
participants were confused or had suggestions about the STS
instructions (e.g., “The record button followed by more
instructions was confusing”); participants were confused or
had suggestions about the survey; (e.g., “Wording of questions
a little confusing”); participants had technical challenges (e.g.,
“Instruction video didn’t play”); and participants indicated
personal preferences or challenges (e.g., “I prefer a computer
to a phone”).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated in this study are available on GitHub: https://github.com/
stanfordnmbl/sit2stand-analysis.

CODE AVAILABILITY
R version 4.2.1 was used with the base packages and the following additional
packages: stddiff, tidyverse, jtools, FSA, ggpubr, readxl, psych, and sjmisc. Custom
scripts were used for data processing and analysis and are open source at https://
github.com/stanfordnmbl/sit2stand-analysis. Custom scripts for the web application
are available at https://github.com/stanfordnmbl/sit2stand.
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